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REACHING HIGH TEMPERATURES

BY COMPRESSING A VAPOR BUBBLE

UDC 533.2+534.2P. I. Mel’nikov, V. G. Makarenko, and M. G. Makarenko

The process of compression of a vapor bubble under the action of an instantaneously applied pressure
is considered. The effect of initial parameters on compression dynamics is analyzed. Conditions of
emergence of a shock wave inside the bubble are considered. It is shown that the temperature in the
bubble is lower than 104 K under uniform compression.
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Introduction. Compression of a gas bubble involves the effect of sonoluminescence [1–3] associated with
reaching high temperatures: above 104 K [4, 5]. Calculations supporting the possibility of reaching such tempera-
tures were performed for an inert gas compressed in water [6, 7]; ionization and the influence of evaporated vapor
were ignored. Taleyarkhan et al. [8] observed the emergence of neutrons due to bubble cavitation, which indicates
that the temperatures are even higher (above 5 · 106 K). The explanation of this effect is related to condensation of
a significant part of vapors onto the bubble walls and formation of a shock wave [8].

The most complicated problem in studying cavitation of a vapor bubble is the interaction between the vapor
and the water surface. This interaction is considered on the basis of the Hertz–Knudsen–Langmuir formula [9, 10]
with an accommodation coefficient varied within 0.006–1 [11]. With such a scatter, the accommodation coefficient
is used either as a free parameter [8] or as a fitting parameters for a particular experiment [12]. The accommodation
coefficient depends not only on the temperature of the water surface but also, possibly, on the vapor flux [11, 13].
The coefficient obtained by fitting an experiment has an integral character and can be used only for estimates in
situations close to this experiment [12].

Another difficulty in cavitation calculations is associated with the allowance for the change in the state of
the substance. Many authors use a simplified approach, choosing an inert gas as a compressed substance [5, 6] or
applying the equations for a gas with a constant heat capacity to describe the state of the vapor [12]. In calculating
the compression dynamics of a vapor bubble, Akhatov et al. [12] accurately took into account almost all possible
effects, even insignificant ones, such as the temperature jump and transferred momentum at the interface between
the media. Nevertheless, the vapor was considered in a simplified formulation, as a Van-der-Waals gas with the ratio
of specific heats equal to 1.3. Taking into account the change in the state of water vapors (increase in heat capacity
and dissociation) will reduce the final calculated temperature severalfold (depending on the degree of compression).
The change in the state of water vapors was taken into account in [14, 15] in connection with detonation processes
inside the bubble. In these works, the thermodynamic parameters of the gas were calculated by the “approximate
kinetic model” developed in [16–18]. We calculated the state of vapor in accordance with the law of mass action
[19] with allowance for rapid compression kinetics.

In the present work, we consider the compression of a vapor bubble under the action of an instantaneously
applied pressure. The compression process is analyzed to find the conditions of reaching high temperatures at the
final stage of compression.
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1. Model of Compression of a Vapor Bubble. An analysis of the works on accommodation-coefficient
measurements [13, 20] shows that the latteris high in experiments with a rapid change in the surface layer of water
[21–23], which is typical of cavitation of the vapor bubble. Assuming that the accommodation coefficient is of
the order of unity, we calculate the bubble-compression dynamics for the case with the maximum possible final
temperature. Such an approach allows us to reveal conditions at which the most intense heating is reached. If the
accommodation coefficient is high, the equilibrium calculation and the calculation by the Hertz–Knudsen–Langmuir
equation are little different [11]. In our analysis, we used the condition of equilibrium at the vapor–liquid interface
[24].

If the bubble is compressed with a subsonic velocity, the pressure inside the bubble is uniform. The calcu-
lations show that the pressures at the center of the bubble and its periphery differ by no more than 20% when the
bubble boundary reaches half of the velocity of sound. The temperature is higher at the center of the bubble. If
the compression is rather fast, the temperature inside the bubble is close to uniform and drastically decreases near
the boundary [12]. Most vapor particles have a close temperature if the temperature-drop layer thickness is much
smaller than the bubble radius (dT � R, this ratio was maintained in the calculations). The estimates show that
thermal conductivity has a weak effect on compression parameters.

The pressure near the bubble boundary and, hence, at its center is equilibrium and is determined by the
temperature on the water surface. During bubble compression, the equilibrium pressure is sustained due to vapor
condensation at the vapor–liquid interface. This leads to water heating and, as a consequence, to an increase in
pressure inside the bubble. When the boundary layer reaches the critical temperature Tcr = 647.28 K, condensation
is terminated, and the pressure inside the bubble is no longer equilibrium. The vapor–liquid interface disappears,
but the density difference remains. This dense spherical piston will continue to compress the vapor inside the bubble.
We assume that the further compression of the vapor will occur in the same manner as for a gas not interacting
with water. The compression process can be divided into two phases: vapor phase and gas phase (after reaching
the critical temperature Tcr at the boundary).

2. Bubble Compression in the Vapor Phase. We write the heat-conduction equation for water near
the vapor–liquid interface:
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+ v

∂T

∂r
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Here, t is the time, r is the radial coordinate, v is the velocity, and æ is the thermal diffusivity. We replace
x = r3 −R3 (R is the bubble radius). Taking into account that v = Ṙ(R/r)2, we obtain
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With allowance for the relation ∂T/∂t � 12æR∂T/∂x, which is valid for all parameters we consider, we simplify
Eq. (1):
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Here u =

t∫
0

R(τ)4 dτ . Assuming that the temperature at the beginning of compression is T0 in the entire space, we

write the solution of Eq. (2) near the interface (x� R3) in the form
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where TR is the temperature at the interface. Then, the heat flux at the interface is
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Here λ is the thermal conductivity, Cpρw is the volume heat capacity of water, and k is the Boltzmann constant;
the temperature T is expressed in energy units.
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The heat flux due to vapor condensation is

q = −H(TR) + E(T )− E(TR)
4πR2

dN

dt
= −H(TR) + E(T )− E(TR)

4πR2

d

dt

PV

T
,

where N is the number of vapor molecules in the bubble, P , V , and T are the parameters of vapor in the bubble,
E(T ) is the total energy of the water molecule, and H is the vapor-formation heat. Comparing this heat flux with
the heat flux (3), we obtain the equality

4
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k

√
πæ

u∫
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d
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T
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This equation implies that the condensation heat H and the equilibrium pressure of vapor P depend only on
the temperature at the interface TR. The dynamics of volume variation is determined by the Herring–Gilmore
equation [25]
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Here R is the current radius of the bubble, Ps is the pressure in water near the bubble boundary, P (TR) is the gas
pressure in the bubble, Pw is the pressure in water at infinity, σ is the surface tension of water, µ is the viscosity of
water, and cw is the velocity of sound in water.

Thermal conductivity being neglected, the change in energy of the vapor bubble dNE is determined by the
energy loss due to the decrease in the number of molecules E dN and the work on bubble compression P dV :

dNE = E dN − P dV. (6)

After the replacements dE = C dT and PV = NT , we obtain

C
dT

T
+

dV

V
= 0. (7)

For C = const, we have the conventional adiabat TV 1/C = const. Note, the adiabat expressed in terms of pressure
relates three quantities PV 1+1/C/N = const.

The dependence of saturated vapor pressure on temperature can be found, e.g., in [26]. The heat capacity
is determined by the formulas of [19] and the data of [27]:
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(hereinafter, the temperature is expressed in electron-volts). Combining relations (4), (5), and (7), making the
obvious substitution V = 4πR3/3, and nondimensionalizing the parameters z = R/R0 and ξ = u/(τ0R

4
0), where

R0 is the initial radius and τ0 = 0.915R0

√
ρw/Pw is the time of the vacuum-bubble collapse, we obtain
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ṪR(τ)√
ξ − τ

dτ + (H(TR) + E(T )− E(TR))
P (TR)z3

T

( dP (TR)
P (TR) dξ

+ 3
(
1 +

1
C

) dz

z dξ

)
= 0,

C
dT

T
+ 3

dz

z
= 0, (9)

z
d2z

dξ2
+ 5.5

[dz

dξ

]2

= 0.9152z−8
( Ps

Pw
− 1

)
+ 0.915

z−3

cw

√
Pw

ρw

dPs

Pw dξ
.

The solution of system (9) is determined by three parameters: initial radius R0, compression pressure Pw, and initial
temperature T0. If the initial pressure in the bubble is low (P0 � Pw), the vapor pressure affects the dynamics of
radius variation only at the final stage of compression. Hence, neglecting Ps in the third equation of system (9),
we find that the relative bubble radius z is almost independent of the initial parameters. The temperature in the
bubble is determined by the initial temperature and relative radius of the bubble: T (T0, z). In the first equation
of (9), the initial parameters enter only the coefficient at the integral in the form R0

√
Pw. Hence, if the water and

vapor temperature are identical in the beginning of compression, the temperature at the interface can be written
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Fig. 1. Relative mass of vapor (solid curve) and temperature at the interface (dashed curve) for
Pw = 5 bar, R0 = 1 mm, and T0 = 30◦C.
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Fig. 2. Residual relative mass of vapor (a) and expected energy of vapor (b) for R0 = 1 mm:
T0 = 20 (1), 30 (2), 40 (3), and 50◦C (4).

as a function of two parameters and a variable quantity z: TR(R0

√
Pw, T0, z). Thus, the parameters R0 and Pw

determine the dynamics of bubble parameters until the final stage of compression (when the influence of the gas
pressure Ps becomes noticeable) only in the combination R0

√
Pw.

The most important quantity at the final stage of compression is the mass of the remaining vapor. We
determine the relative mass of vapor η = M/M0 (M and M0 are the current and initial masses of vapor in the
bubble) and follow its dependence on z (Fig. 1). When the rate of the bubble-radius decrease becomes high, the
vapor mass is stabilized. The mass exchange with the bubble surface is almost terminated even before the critical
temperature equal to 647.28 K is reached at the boundary, i.e., the transition to the gaseous regime of compression
is smooth.

The relative mass of the vapor at the end of compression ηe depends only on two parameters T0 and R0

√
Pw

(see above). As is seen from Fig. 2, ηe rapidly decreases with decreasing R0

√
Pw. An increase in the temperature

T0 leads to a strong increase in the initial pressure P0 and, as a consequence, to an increase in ηe. The final relative
mass of vapor ηe can reach very low values.

Compression of the vapor bubble was calculated for a pure vapor (without any admixtures). The other
substance evaporated from water (e.g., air) should behave as a gas not interacting with the water surface. In the
case of strong condensation of vapor, this substance can become the dominating one rather than a small additive,
which should be taken into account in calculating the final stage of bubble compression.
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Fig. 3. Minimum relative mass of the vapor versus the initial temperature.

A strong decrease in the amount of the compressed substance can lead to a significant increase in the final
temperature. The energy of the vapor molecule at the end of compression is expected to be

E =
PwV0

N
=

Pw

P0

T0

ηe(R0

√
Pw, T0)

. (10)

Here V0 is the initial volume of the bubble. This energy coincides with the real value in the case of small losses
on acoustic radiation and heating of water at the bubble boundary. The value determined by formula (10) is the
estimate from above for the total energy per one water molecule at the end of compression. The higher the expected
energy, the higher the maximum reachable temperature in the bubble. For a fixed R0, the energy E with increasing
pressure Pw first decreases, reaching a minimum as ηe approaches unity, and then increases (see Fig. 2b).

Because of vapor condensation, the mean free path l can become smaller than the bubble radius, and a
complete collapse of the cavity can occur. We introduce the parameter s = l/R and trace its dependence on z. As
a criterion of the complete collapse, we use the condition smax > 1. An analysis of the dependence s(z) shows that
it reaches the maximum at the point where the dependence η(z) starts to stabilize (see Fig. 1) and then decreases
again with decreasing z. The boundary of the complete collapse mode is assumed to be the equality s(z) = 1 at
this “critical” point. Numerical calculations in a wide range of initial parameters yielded the parametric relation

P0R
0.7
∗ P 1/4

w = 0.0334, (11)

which corresponds to the boundary of the complete collapse mode (hereinafter, P is measured in bars and R is
measured in millimeters; R∗ is the radius corresponding to the boundary of the complete collapse). Note also that
relation (11) is also the boundary for the accepted model of temperature distribution (see Sec. 1). The condition
of smallness of the temperature-drop layer thickness dT � R is violated when the mean free path becomes greater
than the bubble radius. The complete collapse will occur at R0 < R∗. For fixed P0 and Pw, a small change in
the initial radius R0 relative to R∗ yields a significant change in the parameter s at the critical point. Therefore,
even for R0 & R∗, the complete collapse is not reached. It is for these values of R0 that the minimum (but not
zero) amount of the residual gas and, hence, the highest value of the final temperature will be reached. Two initial
parameters being fixed, we can find, using Eq. (11), the third parameter for which the amount of vapor at the final
stage of the collapse is minimum. Figure 3 shows the dependence of the minimum reachable value of ηe on the
initial temperature T0 for Pw = 10 bar.

Substituting R∗ from Eq. (11) into the formula for the energy of the water molecule (10), we obtain the
maximum possible energy for fixed P0 and Pw. A numerical analysis shows that this quantity is approximately
described by the formula

Emax = 3 · 107P 1/4
w P−2

0 .

The energy here is expressed in Kelvin. According to this formula, the expected temperature at the end of com-
pression can reach tremendous values. However, this requires a soft compression mode without formation of shock
waves.

A temperature for which dissociation should be taken into account is reached in the course of compression.
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3. Chemically Equilibrium Composition of Water Vapor. To describe the water-vapor composition,
we introduce the relative pressures pi = Pi/P , where Pi is the partial pressure of the ith gas and P =

∑
i

Pi is the

total pressure of the gas. In chemical equilibrium, according to the law of mass action, we obtain the following
relation for the process of molecular dissociation ab→ a + b:

papb

pab
=

gagb

gab

Za(T )Zb(T )
Zab(T )

( µab

2π~2

)3/2 T 5/2

P
exp

(
−Dab

T

)
. (12)

Here, gi is the statistical weight of the electron term of the ith species, µab = mamb/(ma +mb) is the reduced mass,
Zi(T ) is the statistical sum of rotational and vibrational degrees of freedom, Dab is the dissociation potential, and
T is the vapor-mixture temperature expressed in energy units. Water vapors consist of six species: four molecules
and two atoms: H2O, H2, O2, OH, H, and O. Four relations (12) and two relations of particle balance

pH2O + pH2 + pO2 + pOH + pH + pO = 1,

2(pH2O + 2pO2 + pOH + pO) = 2pH2O + 2pH2 + pOH + pH

make it possible to determine all quantities pi(T, P ) for known dependences Zi(T ) (it is assumed that the ratio
between the hydrogen and oxygen nuclei in the vapor mixture is always 2 : 1, as in the water molecule).

The statistical weights of the atoms (see [28]) are expressed via the spin and the total moment of the term
gi = (2Si + 1)(2Li + 1). We have gH = 2 for hydrogen and gO = 9 for oxygen. The statistical weight of diatomic
molecules with a zero projection of the total moment is gi = (2Si + 1). Thus, gH2 = 1 and gO2 = 3. The states of
diatomic molecules with a nonzero projection of the total moment are doubly degenerate gi = 2(2Si +1). Therefore,
gOH = 4. According to the Jang–Teller theorem (see [28]), the main state of the symmetric triatomic nonlinear
molecule is not degenerate; hence, gH2O = 1.

The statistical sum is decomposed into two parts, rotational and vibrational ones:

Zi(T ) = Zr
i (T )Zv

i (T ).

The rotational component of the statistical sum (see [19]) for asymmetric diatomic molecules (OH) is

Zr
i (T ) = 2IT/~2,

where I is the moment of inertia of the molecule. For symmetric diatomic molecules (H2 and O2), the statistical
sum is twice as small:

Zr
i (T ) = IT/~2.

For molecules with three different main moments of inertia (I1, I2, and I3), the rotational component of the
statistical sum is (see [19])

Zr
i (T ) = (2T )3/2

√
πI1I2I3/(f~3).

The number of symmetry f for the water molecule equals 2.
The vibrational component of the statistical sum for diatomic molecules for low temperatures (T < 1 eV,

for which anharmonicity of vibrations can be neglected) is

Zv
i (T ) = 1/(1− exp (−~ω/T )),

where ~ω is the energy of the quantum of molecular vibrations. In practice, this formula is valid for all tempera-
tures, since the majority of molecules become dissociated at temperatures above 1 eV, and the contribution of the
vibrational component of the statistical sum becomes negligible. The H2O molecule can simultaneously have three
orthogonal vibrational motions:

Zv
H2O(T ) =

1
1− exp (−~ω1/T )

1
1− exp (−~ω2/T )

1
1− exp (−~ω3/T )

.

After substitution of statistical weights and all components of the statistical sum into (12), we obtain the system
of equations determining the values of pi(T, P ):

p2
H

pH2

= 8.13 · 106
(
1− exp

(
− 0.502

T

))T 3/2

P
exp

(
−4.48

T

)
,
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p2
O

pO2

= 8.23 · 107
(
1− exp

(
− 0.191

T

))T 3/2

P
exp

(
−5.12

T

)
,

pOpH

pOH
= 3.67 · 106

(
1− exp

(
− 0.433

T

))T 3/2

P
exp

(
−4.4

T

)
, (13)

pHpOH

pH2O
= 1.14 · 108 (1− exp (−0.198/T ))(1− exp (−0.456/T ))(1− exp (−0.466/T ))

(1− exp (−0.433/T ))
T 2

P
exp

(
−5.17

T

)
,

pH2O + pH2 + pO2 + pOH + pH + pO = 1,

4pO2 + pOH + 2pO = 2pH2 + pH.

The potentials of dissociation and energy of vibrational quanta are taken from [27]. The results of calculations by
formulas (13) are in good agreement with the data of [26].

Based on the calculated values of pi, we determine the heat capacity of the vapor mixture. It equals the
sum of heat capacities of the species in the mixture:

C = N
∑

i

cipi.

Here N is the total number of particles, piN is the number of particles of the ith species, and ci is the heat capacity
of the molecule or atom of the ith species. For instance, the heat capacity of the water molecule is determined
by formula (8). The number of particles N changes in the course of dissociation. We introduce a parameter that
remains unchanged during dissociation: the number of oxygen nuclei

NO = N(pH2O + pOH + pO + 2pO2),

which coincides with the number of water molecules in the case of complete recombination of the vapor mixture,
and the relative concentrations

νi =
piN

NO
=

pi

pH2O + pOH + pO + 2pO2

.

Then, the heat capacity can be written as

C = NO

∑
i

ciνi.

4. Allowance for Dissociation During Bubble Compression. Chemical equilibrium during the entire
process of compression implies that the rate of variation of vapor parameters is slower than the rate of chemical
reactions. Satisfaction of this condition was verified by the chemical reaction of dissociation of water molecules,
which is the determining one at the initial stage of dissociation of the vapor mixture. Based on the data of [29],
we calculated the dissociation rate Kd of water molecules in the course of the bubble collapse. The compression
process itself was considered by formulas (9) without allowance for dissociation. The results of this calculation are
plotted in Fig. 4 in comparison with logarithmic derivatives of the vapor parameters.

Up to a temperature of 5000 K, the dissociation rate is much lower than the characteristic rate of the
collapse. Hence, there is practically no dissociation below this temperature. In a chemically equilibrium process,
dissociation becomes significant already at a temperature of 2500 K. This means that the kinetic approach should
be used for calculating dissociation. We introduce the chemical equilibrium parameter γ = α/(1− νH2O) (α is the
dissociation coefficient). In the case of chemical equilibrium, γ = 1. To describe the process of compression, we
accept the following simplified model: the number of dissociated water molecules αNO is calculated kinetically from
the dissociation rate Kd, and then the vapor composition is found by multiplying the chemically equilibrium value
by γ. The calculations should also take into account the recombination rate. As in decomposition, the main role
in formation of water molecules belongs to binary collisions, e.g., the reaction OH + H2 → H + H2O. Therefore,
the recombination rate is quadratic with respect to γ; hence, the rate of the decrease in the amount of water is
(1−γ2)Kd. Because the rate of other reactions leading to equilibrium is either the same as that of water dissociation
(e.g., OH+H2O→ O+H+H2O) or higher (the rate of the reaction H+H+H2O→ H2 +H2O is much higher that

472



T, 103 K
107

109

108

1010

2000 4000 6000 8000

Kd, sec
-1

Fig. 4. Rate of variation of vapor parameters in the course of the bubble collapse without allowance
for dissociation for the initial parameters R0 = 0.5 mm, T0 = 30◦C, and Pw = 10 bar: rate of
dissociation Kd of water molecules (solid curve), density growth rate ρ−1 dρ/dt (dot-and-dashed
curve), and temperature growth rate T−1 dT/dt (dashed curve).

the rate of water dissociation for commensurable concentrations of hydrogen and water), such a simplified approach
yields good agreement with the exact kinetic calculation.

With allowance for the model accepted, the internal energy of the molecular gas is EH2O − αu, where

u = EH2O −
∑

i

νi
Ei

1− νH2O
(summation is performed over all components of the vapor mixture). Here, the

energy Ei include the potential of molecular dissociation. For instance, the energy of water is determined by the

formula EH2O =
∫

cH2O dT −DH−OH −DOH. With allowance for dissociation, Eq. (6) should be rewritten as

d(EH2O − αu)NO = EH2O dNO − P dV. (14)
The value of α is determined by the kinetic equation

dα

(1− α) dt
= (1− γ2)Kd.

Using (14) instead of (6), we obtain a new system of equations similar to (9) but much more cumbersome.
Allowance for dissociation has practically no effect on the bubble-compression dynamics. This effect is

significant only at the final stage. Its influence on the mass exchange between the vapor and the water surface is
also weak. Thus, allowance for dissociation alters the final mass of vapor by less than 1%. A significant effect is
produced by dissociation on temperature and pressure inside the bubble.

5. Condition of Shock-Wave Emergence. After transition to the gaseous mode of compression, the
density of the compressed vapor can reach high values. For further calculations, as the equation of state, we use
the two-parameter Redlich–Kwong equation

P =
NAT

Vµ − b
− a√

T Vµ(Vµ + b)
, (15)

where NA is the Avogadro number, Vµ is the molar volume, and a and b are the Redlich–Kwong parameters. During
the bubble collapse, a decrease in volume is accompanied by an increase in temperature. An analysis shows that
the second term of Eq. (15) can be neglected for such a process. The parameter b has the meaning of the volume
occupied by electron shells of one mole of particles and, obviously, remains unchanged in the course of dissociation
with an unchanged number of nuclei. Taking into account this fact, we write the equation of state in the form

PV =
νNOT

1− βNO/V
, (16)

where β = b/NA = 2.43 · 10−23 cm3 and ν =
∑

i

νi. Formula (16) is correct up to the concentration of oxygen

nuclei equal to the concentration of water molecules in the liquid state 3.3 · 1022 cm−3. At high concentrations, P

formally tends to infinity, and another equation of state should be used in this case.
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Fig. 6. Function h(y) of the boundary of shock-wave emergence.

To analyze the sufficient conditions of shock-wave emergence, we use the Herring–Gilmore equation (5). The
calculations show that the distributions of density and pressure in the bubble are close to uniform before shock-wave
origination. For instance, it is shown [7] that, in the case of shock-wave formation, the dynamics of bubble-radius
variation almost coincides with the calculation performed by Eq. (5) for a uniform distribution of pressure. Hence,
in what follows, we calculate the conditions of shock-wave emergence, assuming that the pressure is uniform.

The shock wave originates as the velocity of the bubble boundary v = Ṙ exceeds the velocity of sound in
the gas cg. For each initial pressure P0 and initial radius R0, we determine the minimum pressure P ∗

w for which
this condition is satisfied. Calculating the velocity of the bubble boundary by Eq. (5), we choose P ∗

w so that the
ratio v/cg in the maximum reaches unity, which is illustrated in Fig. 5. Such a situation mainly occurs owing to
the nonlinear effect of density in the equation of state (16). Hence, the density at this point weakly depends on the
initial parameters and reaches 0.1–0.2 g/cm3. Processing of the results of such a calculation reveals the dependence

P ∗
w = 100P 3/4

0 h(y), (17)

where y = 36R0P
2
0 , and the dependence h(y) is plotted in Fig. 6. For water pressures higher than P ∗

w, the ratio v/cg

in the course of compression becomes higher than unity, which leads to shock-wave generation. As is seen from
Fig. 6, for

R0 < 1/(36P0)

the shock wave formally emerges for all Pw > P0. Indeed, even a small excess of Pw over P0 triggers compression. In
the case of such slow compression, the temperature on the bubble surface increases weakly, and hence, the pressure
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inside the bubble remains unchanged and compression continues. If the collapse condition (11) R0 < R∗ is satisfied
thereby, the bubble simply collapses; for R0 > R∗, a shock wave is formed. Thus, for small R0, the condition of
shock-wave formation Pw > P0 should be combined with the condition

Pw >
( 0.0334

R0.7
0 P0

)4

.

For instance, for the initial radius R0 = 2 mm and initial temperature 20◦C (P0 = 0.0234 bar), the necessary
condition for shock-wave generation in the bubble is Pw > 0.6 bar.

After determining the conditions of shock-wave emergence, it becomes possible to determine the maximum
reachable temperature under uniform compression. According to (10), for fixed Pw and P0, the final energy of
vapor molecules increases with decreasing R0. Hence, Eq. (17) determines the surface of parameters for which
the maximum temperature under uniform compression is reached. If we fix the value of T0 and move along the
curve h(y) (see Fig. 6) from low to high values, changing Pw and R0, we find that the energy E rapidly increases
first, and then (for y > 2) its growth becomes slower, and the energy approaches a certain maximum value. This
maximum value turned out to be weakly dependent on T0 and approximately equal to 6 · 104 K. The integral heat
capacity of the water molecule (E/T ) at high temperatures approaches 6. Hence, without allowance for dissociation,
the maximum temperature is 104 K (dissociation at high Pw and R0 is low). For the initial data of the calculation
illustrated in Fig. 5, the energy of one molecule is 3.6 · 104 K (y = 1.65); therefore, the temperature, with allowance
for integral heat capacity, is 6 ·103 K, which is slightly higher than the result of the dynamic calculation (see Fig. 5)
that takes into account dissociation as well.

In the case of shock-wave formation, the temperature can be much higher, but its determination requires a
special study.

Conclusions. Vapor condensation in the course of compression of a vapor bubble is responsible for a
significant decrease in the amount of the heated substance. Such a decrease can lead to the complete collapse of
the bubble. The collapse condition is determined by the initial parameters. A shock wave emerges in a wide range
of initial parameters. In this case, it is possible to reach high (above 104 K) temperatures. The condition for
shock-wave origination is set by a functional dependence of initial parameters of the bubble. In the case of uniform
compression, the maximum reachable temperature of vapor is 104 K.

Considerable condensation decreases the amount of vapor in the bubble by several orders. This effect can
be used for concentration of the substance added to water in the heating zone.
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